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ABSTRACT 

The *lJorgensen" profile function conventionally used to describe the shape 
of observed Bragg peaks in time-of-flight powder neutron diffraction fits 
individual peaks very well. However, the wavelength or plane spacing 

variation of the parameters of the components of this function, as they are 
conventionally represented in Rietveld analysis, is inappropriate for 
fitting data extending over a wide range of plane spacings, d. We have 
developed a new representation of the d-dependence of the profile parameters 
which are generalizations of Pade' approximants, have built-in physically 
realistic large- and small-d limiting behavior, and provide better fits to 
parameters derived from individual peak fits than the conventional forms. 
We report the results of tests of the new parameterization of the profile 
functions. 

I. Introduction 

Figure 1 illustrates the Jorgensen profile functionl, which is the sum of 
truncated rising and falling exponentials normalized to the same value at t-0, 
convoluted with a Gaussian function. LY is the coefficient of the rising 
exponential, /3 is the coefficient of the falling exponential, and to is the 
centroid and (I the standard deviation of the Gaussian. All parameters are 
functions of d, the plane spacing of the reflection presumed to produce the . 

reflection. For detectors at a given scattering angle 20, d variation is 
equivalent to X variation, since X = 2dsin 8. We discuss the profile function as 
a function of time-of-flight, t, the observed variable, with parameters fixed 
according to the corresponding d (or h) and 8. Even though the function is of 
very simple form, experience reveals that it is capable of reproducing the shape 
of Bragg peaks to quite acceptable accuracy, with only a small systematic 
deviation near the maximum which is just noticeable in data having better-than- 
average statistical precision. 

The goal of the present work is to develop generally applicable mathematical 
forms containing wavelength (d spacing) independent parameters specific to 
instrument and scattering angle, which represent the wavelength (d spacing) 

dependence of the parameters of the Jorgensen profile function. 

I 
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Figure 1. The Jorgensen 

II. 'Pade* Approximants 

profile function. 

Pade' approximantd* are ratios of polynomials 

f.(x) = xp = ;P P, (xl 

cafe biXi P,(?f) 
(1) 

where a0 , b. , aNN and bND are all different from zero. 

The leading terms of a Taylor expansion of (1) are related-to the leading 
terms of a Taylor expansion of f(x) in a simple way. 

f (xl =*g* f,x” 

a, =~~~‘bn+p_kfk I (osnNN) . 

Similarly, if in a Taylor expansion in y = l/x, 

S!(Y) =*go g*Y” 

the same polynomials can represent g(y) --. 

g(y) =‘yq ‘N(-) 

q) WY) 

if 

b n_q+kgk I (O’*‘NN) l 

(2) 

(3) 

(5) 

(6) 

Equations (3) and (6) can be used to place conditions on the limiting 
behavior of the function. 
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The lowest order terms in the Taylor expansions for large and small x are 

and 

l$im_f (x) = 
aNN 

x (P+NN’ND) 
and- 1 bN~-l 1 
- - 

bND any l-l bN~ x 

lpo f (xl +fL.P 1+ AL-_% x. 

0 I I aO b0 1 I 
(7) 

(8) 

These properties of Pade' approximants, namely the natural way in which 
limiting behavior required by physical constraints can be built in, led us to 
choose them for the present purposes. To limit the number of parameters in 
the functions, we have chosen particular forms of Pade' approximants, namely 
ones in which most of the disposable ai's and bi 's are equal to zero. 
Further, we allow NN and ND to have non-integer values, so that in this sense 
our functions are not properly called Pade' approximants. A necessary 
constraint on functions in the present context is that the denominator 
polynomial may have no zeros for real, positive d. When positive-definite 

quantities appear, we represent them as squares of fitting parameters, 

respecting the fact that our computer codes operate in the field of real 
numbers, while the nonlinear least squares routines used for fitting require 
smooth behavior of the functions with respect to the fitted parameters. 

III. Diamond Pow&r Calibrant 

To provide well resolved peaks at the smallest possible wavelengths (d 
spacings), we use a diamond powder sample with grain size of about 150 m. 
(The diamond lattice constant is about 2/3 that of the frequently used 
silicon powder calibrant.) The grains are purposely large to avoid grain 
size broadening effects in the measurements, but their large size leads to 
significant primary extinction effects. The extinction affects the peak 
intensities, but does not alter the shapes of individual Bragg peaks. 

IV. The Coefficient of the Falling Exponential, B 

The principal motivation for including a falling exponential in the profile 
function is to represent the decay of the fundamental eigenfunction in the 
flux distribution in the moderator. Since the fundamental eigenfunction 
dominates the energy distribution at long wavelengths, fl is expected to 
approach a constant in the limit of long wavelengths. Experience shows that 
fl approaches the long wavelength limit from shorter wavelengths as 
(constant)/Xq, where q = 4. On these grounds the present Rietveld codes 
parameterize the d-variation of fi in the form (9). This form cannot describe 

6 = 0, + Pl/d4: (9) 

the behavior of B(d) for small d, where (9) diverges non-physically. 
Typically, the profile parameters exhibit several inflection points, because 
of the complicated wavelength dependence of the moderator pulse shape, so a 
more complicated form is required. 
Noting that the decaying exponential must describe the short wavelength 
behavior of the moderator pulse, which is of the form 
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#(X,t) a t e 2 -a(X)t Cm 

where at short wavelengths, a(X) -+ (constant)/&, fi must be inversely 
proportional to X for short wavelengths, 

l~~olp(xI = -(constant)/h. p1 
: 

To the extent that B describes geometric effects, ,f3 must-also tend to the 
small-X li.mit,as l/X (l/d). Thus, the form representing fi must be modified 
from (91 at short wavelengths (small d) in some smooth way. We propose the 
form 

I 

B(d) = t&,/d) 
1 + bd" 

(12) 
1 t K2dn-l 

which has the limiting behavior 

l&~00(d) = .P,/d (131 

and (not quite correctly, but simply) 

l$n_S(d) = flo(b/K2,(l + l/bdn - 1/K2dn-l) (14) 

Figure 2 shows the results of fitting (12) to data from the 150' bank of 
detectors in the SEPDl, using the diamond powder sample. The experimental 
values for fl were derived from separate fits to the observed, resolvable 
peaks. 

u-l 
d 

Id 
iii 
m 

P(d) = &/d) ' + bdn 
1 + K2dn-l 

P, = 0.087 
b = 11.7 
K = 4.91 
n = 8.89 

Figure 2. Data and fitted curve, equation (12) for the fl parameter 
descfiibin.g Bragg peaks measured at 28 = 150' in the SEPD. The unit of fl is 

usec ; the unit of d is A. 
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V. The Gaussian Width Parameter 

The width of the Gaussian function o(d), must describe the composite of many 
geometric effects, including the many contributions to the angular 
distribution of diffracted neutrons, and also must describe the shape of the 
moderator pulse. Certain sample scattering effects also appear in the 
Gaussian width function. 

contributions to a*; 
All these effects add as squares in their 

this justifies their description as a Gaussian functioni 
according to the central limit theorem. The geometric contributions are 
strictly proportional to d (or X). Moderator effects have very complex 
wavelength dependence, but in the limit of small wavelength, these must 
contribute to (I as a term proportional to wavelength. It is found 
empirically that o behaves as a + bd at long wavelengths, where the constant 
b is not the same as the slope of Q at small wavelengths. 

We have chosen to represent o(d) as 

*0 * + old n-1 + 02*dn 

o(d) = d (15) 
d" + K* 

Figure 3 shows the resulting fit to data from the 150' bank of detectors in 
the SEPD, using the diamond powder sample. 

u. = 0.382 
o1 = -3.9 
o2 = 3.1 
n E 7.93 

K = 0.158 

0 
d 

Figure 3. Data and fitted curve, equation (15), for the o parameter 
describing Braggpeaks measured at 28 = 150' in SEPD. The unit of o is psec; 
the unit of d is A. 
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VI. The Gaussian-Center Time, .to - . : _’ 
‘_ 

The Gaussian center time, to, is dominated by the contribution from the total 
flight path which is proportional to d (or X), and contains a constant 
contribution that can be identified with the electronic time delay in the 
time origin pulse. to is not the me,an time associated with the Bragg peak, 
since the rising and falling expone.ntial.func.tions do not in general 
represent a symmetric function. 
moderator pulse-in a complex way. 

Furthermore, to depends on the shape of the 
We have chosen to represent t,(d) as 

+ t3dn-' + tq2dn 

t, (d) = tl + d . (16) 
d" + IS* 

Figure 4 shows the results 'of fitting data from the 150' bank of detectors in 
the SEPD, using the diamond powder sample. 

8 
.z 
al 

3 

to(d) = 
d" + K2 

t1 - 
t2.= 
t3 =_ 
tq = 
n = 

-2.07 
,162.6 
45.1 
86.9 
2.39 

I - 1 1 K = 1.87 I -..,: -’ 

I..- . . . y : -- 

.’ 

< 

0.0 1.4 
cl 

.Figure 4. The difference betweeh the da&a and the fitted ~czzrve, e&ation(l6) 
for the to parameter describing &a&g peaks.measured'a& 28 = 150' in SEPD. 
The'unit of to is psec; the unit bf d is _A. 

VII. The Coefficient of the Rising Exponential, CY 

The coefficient of the rising exponential, a(d), represents mostly the effect 
of detector height (at least at backscattering angles)., As such, it 

describes strictly a geometric effect, and is expected-to be simply 
inversely proportional to X (or d). Although cy is a necessary parameter; the 
profile functions are not highly sensitive to the value of (Y, therefore'data 
tend to be poor, but the need for accurate values is correspondingly small. 

We choose to represent 

a(d) t y/d. (17) 
'. 
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Figure 5 shows 
using equation 

the results of fitting 150' SEPD data to diamond,powder data, 

(17). 

0.0 1. 
d 

30 

Figure 5. Data and fitted curve, equation (17), for the u parameter 
describing Bragg peaks measured at 20 = 150' in SEPD. The unit of 41 is 
psec'l; the unit of d is A. 

VIII. Status and Conclusions 

We have conceived and tested a new set of functions having the form of Pade' 
approximants, to describe the wavelength (d-spacing) variation of the 
parameters of the Jorgensen profile function. Tests on parameters derived 
from individual peak fits to data taken from diamond powder at large 
scattering angles indicate that functions of this form are capable of 
describing the complicated variation of these parameters, with good accuracy 
and without requiring an excessively large number of wavelength-independent 
parameters. This work is really not complete, inasmuch as we have not fully 
exploited the capabilities of the Pade' approximant forms. Neither have we 
correctly imposed all the limiting behavior of the profile parameters in the 
fitting forms, nor been able to recognize which wavelength-independent 
parameters are related. 

Testing of the new functions using the IPNS Rietveld analysis software has 
begun, addressing questions of refinability, independence of parameters, and 
the accuracy of Rietveld structure refinement. 

We have been able to draw some preliminary conclusions from Rietveld analysis 

of the 150' SEPD data from the diamond sample in the range 0.2 z?G d 5 1.3 A 
and from our standard silicon sample in the range 0.3 s d 5 3.3 A. The 
profile fit improves significantly when /3(d) from the Pad6 approximant 
formalism in (12) replaces that described in (9) - e.g., the weighted profile 
R-factor (Rwp)' reduced from 11.73% to 10.67% in the diamond data analysis. 
However, virtually no improvement is*observed in the fit when the description 
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for the Gaussian width parameter u(d) in (15) replaces that' which is being. 
used at present. We emphasize that these results are preliminary, and in 
assessing the effects of these functional forms on the accuracy and precision 
of structural parameters derived from Rietveld analysis, more work on a wider 
range of standard samples will be required. 
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